
[Kumar, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[606-610]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Comparative Study: Garbage Collector in OODBMS
Abhay Kumar 1, Jitendra Singh Yadav 2

1,2 Computer Science And Engineering, JECRC UNIVERSITY, India

abhaykumar.it@jecrc.ac.in

Abstract
This paper addresses the use of garbage collectors for efficient garbage collection in a large object-oriented

database. The OODB is partitioned and grouped independently by using information about inter-partition references.

This maintains the information on disk so that it can be recovered after any kind of crash like disk failure. We have

discussed the part of garbage collector responsibility for maintaining information about inter-partition references and

how they work during the transaction call. This paper also contains the comparison between the garbage collector to

identify the problem in maintaining the transaction call for large dataset and a proposed solution so that

uninterrupted process can be made.

Keywords: OODBMS, inter-partition references, Garbage Collector, Transaction, Partition

Introductions
Object Oriented Database System made a

successful path for any database technology to take

part in the field of ecommerce or we can say that due

to OODBMS today the transaction of data are

successful in the current contrast for example

transaction of money using an Automated Teller

Machine(ATM) or ordering of products through

online shopping sites.[1]

Two concepts were developed using different object

oriented languages (java) that is now used in

OODBMS which directly supports a complex,

interconnected data and an idea of object identity

separated from object value.

The two concepts are: [2]

 The retrieval of storage for continual

 Memory object that are no longer accessible

From different research article it is been summarized

that the inaccessible data doesn’t affect the functional

behavior of a running application but it shows a bad

impact on its performance, as these unreferenced data

increases the effective size of database and can

increase access time. Automatic garbage collection is

widely recognized as a fundamental mechanism that

relieves software programmer from dealing with

memory de-allocation. The garbage collector is

designed to organize and update the information

avoiding disk accesses and dangling references.

These problems are present in old programming

language like c which doesn’t support object oriented

concepts. [2]Benefits of garbage collector usage are:

 It detects all the self-referential data object

of garbage like basic reference counting.

 It allows transactions to run concurrently.

 It helps in data recovery during system

crash.

From the above now we can conclude that-The term

"garbage collection" is usually used to refer

collectively to all techniques for automatic memory

management, and therefore, reference counting can

be thought of as a form of garbage collection.

Related work
Object oriented paradigms forms a new form of

database called object oriented database. This

database made large and bulk Transactions possible

over the Internet. As OODB used in transaction

process the system handles the processing of data in a

parallel manner but sometimes system has to suffer

from shortage of memory. So to deal with this

problem garbage collector concept was used. This

idea comes from various object oriented languages

which being used now days like java. If we do not

use this concept then due to lack of storage the

running transaction may be affected and suddenly

stops. [3]Garbage collector also used for several

issues:

 Disk-resident data-the size of object data can be

very large and only part of database can be

cached into main memory the garbage collector

has to minimize the number of disk I/O’s and

must also avoid replacing recently fetched object

in the cache.

 Fault Tolerence-the collector has to preserve the

transaction semantics. It must survive the system

crashes and must not leave the database in the

inconsistent state. The recovery process must

http://www.ijesrt.com/

[Kumar, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[606-610]

remain fast even in the presence of garbage

collector.

 Concurrency- the collection process must be

able to run concurrently with client transaction.

It should not affect the performance of the client

operations.

As we know day by day transaction are increasing

exponentially so to control the load of the transaction

over the internet clustering of data is done for the fast

retrieval of result.
[3]Garbage collector scheme has several advantages:

 It is possible to make the partition size small

enough that the entire garbage collector can

performed in main memory. This makes GC fast

and reduces the number of I/O operation

executed by the GC.

 This is scalable because the work carried out by

the GC is independent of the database.

 The collector is free to select which partition to

collect.

 Collector can run concurrently with the client

activities.

 The scheme is fault tolerance.

After going through most of the research article it

come to be known that the biggest problem with

reference counting is its inability to handle self-

referential data structures.

Garbage Collector
[2]Automatic memory management, or garbage

collection, provides significantly benefits to software

engineering. Automatically reclaiming unneeded data

prevents memory leaks problem from unreachable

objects known as “dangling pointers” (when a

programmer accesses previously freed memory), and

security violations. Garbage collection also improves

software modularity by eliminating object ownership

and reclamation problems that arise when memory

passes across each module boundaries. Because of

these programmers are increasingly using garbage

collected languages such as Java and C#.

There are two basic Garbage Collectors used; they

are Copying Collector based and Mark-Sweep based.

1. Copying Collector based: The copying

collector algorithm re-clusters objects

dynamically; the re-clustering can improve

locality of reference in some cases, but may

destroy programmer specified clustering

resulting in worse performance in other

cases.

2. Mark and Sweep based: the Mark and

Sweep algorithm marks all live objects by

traversing the object graph and then

traverses (sweeps) the entire database and

deletes all objects that are unmarked.

With both the above algorithms, we conclude that

cost of traversing the entire object can be probably

expensive for databases larger than the memory size,

particularly if there are many cross-page references.

Comparison
[3]Mark and Sweep based:

When we use mark-sweep technique, unreferenced

objects are not reclaimed immediately. The process

starts after all available memory been exhausted.

When it happens, then execution of the program is

suspended temporarily while the mark-sweep collects

all the garbage. Once the unreferenced objects have

been reclaimed, the normal execution of the program

resumes.

The mark-sweep algorithm is also called

a tracing garbage collector because is traces out the

entire objects that are directly or indirectly accessible

by the system. The objects that a system can access

directly are those objects which are referenced by

local variables on the processor as well as by any

static variables that refer to objects. These variables

are called the root of an object in context of garbage

collection. An object is indirectly accessible if it is

referenced by a field in some other (directly or

indirectly) accessible object which is also said to

be live. Conversely, an object which is not referenced

(directly or indirectly) is garbage.

The mark-sweep algorithm consists of two phases:

 In the first one, it finds and marks all live

objects. The first one is called the mark phase.

 In the second, the garbage collection algorithm

scans through the parse tree and reclaims all the

unmarked objects. The second is called

the sweep phase and the algorithm can be

expressed as followed in fig:

Figure

[3]Fig: Mark-Sweep Process

In order to distinguish the live objects from garbage

one, we record the state of an object, i.e., we add a

special Boolean field to each object called marked.

All objects are unmarked by default when they are

created. Thus, the marked field is initially maintained

false.

An object p and all the other objects which are

indirectly accessible from p can be marked by using

the following recursive mark method:

http://www.ijesrt.com/

[Kumar, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[606-610]

Figure:

[3]Fig: Recursive Mark Method

Notice that this recursive mark algorithm does

nothing when it finds an object that has already been

marked. As a result, the algorithm is guaranteed to

terminate. And it terminates when all accessible

objects is been marked.

In its second phase, the mark-sweep algorithm scans

throughout the objects in the heap, in order to locate

the unmarked objects. The storage allocated with

unmarked objects is reclaimed during each scan. At

the same time, marked field of live object is set back

to Boolean value false for the next invocation of the

mark-sweep garbage collection algorithm:

Figure:

[3]Fig: The next invocation of the mark-sweep

garbage collection

Figure illustrates the operation of the mark-sweep

garbage collection algorithm. Figure (a) shows the

conditions before garbage collection begins. In this,

there is a root variable. Figure (b) shows the effect of

the mark phase of the algorithm. At this point, all live

objects marked with Boolean value true. Finally,

Figure (c) shows the objects left after sweep phase

been completed. Only live objects remains in the

memory and the all marked field have been again set

to be false.

Figure:

[3]Fig 2.2: Mark-and-sweep garbage collection.

Because the mark-sweep garbage collection

algorithm traces out the set of all objects accessible

from the roots so we can say that this algorithm is

able to correctly identify and collect garbage even in

the presence of reference cycles. This is the main

benefit of mark-sweep over the reference counting

technique presented in the preceding section. A

secondary benefit of the mark-sweep approach is that

the normal manipulations of reference variables incur

no overhead.

Copying Collector based:

At an abstract level, all a copying collector does is

start from a set of roots and traverse all of the

reachable allocated objects and then it starts copying

them from one half of memory into the other. The

area of memory that we copy from is called old

space and the area of memory that we copy to is

called new space. When we copy the reachable data

then we pack it so that it continues be in a regular

chunk. So, in effect, we compress the holes in

memory that the garbage data taken. After the copy

and compress, we end up with a compacted copy of

the data in new space data and a large, contiguous

memory location in new space in which we can easily

and quickly allocate new objects. The next time when

we again perform garbage collection, the roles of old

and new spaces are reversed.

For example, let this to be a memory, where the filled

boxes represent different objects and the thin black

line in the middle represents the half-way point in

memory.

Figure:

Fig: Half way point in memory [4]

At this point, we've filled up half of memory and so

we initiate a collection with having old space in the

http://www.ijesrt.com/

[Kumar, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[606-610]

left and new space on the right. Suppose further only

the red and light-blue boxes (objects 2 and 4) are

reachable from the stack and after copying and

packed in, we would have a picture like this:

Figure:

Fig: Object beyond Half way point in memory [4]

Notice that we copied the live data (the red and light-

blue objects) into new space and live the unreachable

data in the first half so that we can now "throw away"

the first half of memory (this doesn't really require

any work):

Figure:

Fig: Memory free the unreachable object [4]

After copying the data into new space, we restart the

computation from where it was been left off. The

computations continue allocating objects, but this

time it allocates them in the other half of memory

(i.e., new space). The fact that we compact the data

makes easy for the interpreter to allocate the entire

live object, because it has a large, contiguous lump of

free memory. So, for an instance, we might be able to

allocate few more objects:

Figure:

Fig: Adding new object in memory [4]

When the new space fills up and we are ready to do

another collection, we flip our concept of new and

old. Now old one is on the right and new one on the

left. Suppose now that the light-blue (Obj 4), yellow

(Obj 6), and grey (Obj 8) boxes are the reachable live

objects then we copy them into the other half,

throwing away the old:

Figure:

Fig: Memory free the unreachable object [4]

Conclusion
Mark and Sweep based:

Disadvantage:

The mark-and-sweep approach is the fact that that

normal program execution is suspended while the

garbage collection algorithm runs so this can be a

problem in a program that interacts with a human

user or that must satisfy real-time execution. For

example, an application that uses mark-and-sweep

garbage collection becomes unresponsive

periodically.

Solution:

So to reduce this cost an alternative algorithm steps

were taken in which the database is divided into

partitions consisting of a few pages. Each partition

stores inter-partition references which references to

objects in other partitions, in a persistent data

structure. Objects referred from other partitions are

treated as if they are reachable from the persistent

root, and are not garbage collected even if they are

not referred to from within the partition. Thus,

partitioning makes the traversal more efficient.

Copying Collector based:

Disadvantage:

What would happen if we perform a copying process

but there's no extra memory hole left over? Typically,

the garbage collector will ask the Operating-system

for more memory space and if the OS says that

there's no more available, then the collector heave up

its hands and terminates the whole program.

Solution:

The solution can be merging the idea of both Garbage

Collector and can be called a Hybrid Collector

Approach.

Benefit:

We know that there are going to be a lot of objects

that are created during program initialization and

which persist for the entire duration of the program.

The compiler knows which objects these are and can

shunt them to a separate area of memory that isn’t

subject to garbage collection. You can also reduce the

impact of large objects by moving them off into a

special memory space of their own. The so-called

"large object space" would be managed separately by

mark-sweep garbage collection and also these two

techniques can set a long way towards reducing the

position of the spaces controlled by copying

collection.

Future work
We have observed that just after creation of

the datasets, garbage collection has to perform extra

work to convert weak pointers into strong pointers.

However, once the conversion has been performed, a

good set of strong pointers is established, and the

further cost of garbage collection is quite low. We

can develop bulk-loading techniques for reducing the

cost of setting up pointer strengths.

References
1. Bruno R. Preiss, B.A.Sc., M.A.Sc., Ph.D.,

P.Eng., Associate Professor, Department of

Electrical and Computer Engineering,

http://www.ijesrt.com/

[Kumar, 3(6): June, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[606-610]

University of Waterloo, Waterloo, Canada,

”Data Structures and Algorithms with

Object-Oriented Design Patterns in Java”.

2. MATTHEW HERTZ, Graduate School of the

University of Massachusetts Amherst,

Graduate School of the University of

Massachusetts Amherst,” QUANTIFYING

AND IMPROVING THE PERFORMANCE

OF GARBAGE COLLECTION”, partially

submitted thesis in September 2006.

3. http://www.cs.cornell.edu/courses/cs3110/2

014sp/lectures/26/memory.html

http://www.cs.canisius.edu/~hertzm/thesispd

f

http://www.ijesrt.com/

